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1 Représentation d’un nombre complexe

Soit z = a + b, (a,b) € R? un nombre complexe.

Dans le plan muni d’un repere orthonormé (O; @, ¥), on peut associer a z le point M (a,b).

On dit que M est I'image de z.

Réciproquement, & tout point M (a,b) du plan, on peut associer un unique complexe z, défini par

—
z = a + ib, z est appelé affixe de M ; on dit aussi que z est laffixe du vecteur OM.

<L
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2 Module et Argument

2.1 Module

Définition 1
Pour z = a + ib, on définit |z] = Va2 +b? = 2z € RT.

Proposition 1
On a |z| > 0 avec égalité < 2z = 0.

Proposition 2
Pour tout z € C, |Re(2)| < |z| <= 2z € RT, |Im(2)| < |2| & 2 €iR™.

Proposition 3
Pour 21,20 € C,

— |z122| = |21] |22]

— |21 + 22| < |z1| + | 22| [Inégalité triangulaire].

R

FI1GURE 1 — Illustration géométrique de 'inégalité triangulaire dans C.



Term. Maths Expertes 2025-2026

Exemple
Dans un parallélogramme, la somme des carrés des diagonales égale la somme des carrés des cotés.
Si les longueurs des cotés sont notées L et [ et les longueurs des diagonales sont D et d, alors :

D? +d? =212 + 212

Démonstration
Considérons le parallélogramme de sommets 0, z, 2" et z + 2’. Alors :

D+ d? =24 22+ |2 — 212 =222 + 2|¢/)* = 21> + 212

Mini-Exercices

1.

A A

2.2

1
1—2i
Ecrire sous la forme a + ib les nombres complexes (1 + )2, (1+1)3, (1414)%, (1 +1)8.
En déduire 1+ (1 +d) + (1 +4)%+ -+ (1 +14)7.
Soit z € C tel que |1+ iz| = |1 — iz|, montrer que z € R.

Calculer 1 — 27 +

Montrer que si |Re z| < |Rez/| et [Imz| < |Im 2| alors |z] < |Z/|, mais que la réciproque est fausse.

1
Montrer que — = % (pour z # 0).
z |4

Argument et Trigonométrie

Définition 2

Pour z # 0, tout réel 6 tel que z = |z|(cos @ + isin @) est un argument de z.
Si 6 est un argument, alors 6 + 2kw (k € Z) l'est aussi.

Remarque 1
On peut imposer a cet argument d’étre unique si on rajoute la condition § € [—m, +].
Alors 'argument est appelé argument principal et est noté Arg(z).

Remarque 2

0=02r] < 3ke€Z =0 +2kr {

cosf = cos b’

sinf = sin 6’

Proposition 4.

L’argument satisfait les propriétés suivantes :

— arg(zz2') = arg(z) + arg(2’)[27]

— arg(2") = narg(z)[27]
— arg(1/z) = —arg(z)[27]
— arg(z) = —arg(z)[27]

Démonstration.
zz' = |z|(cos O +isin@)|2’|(cos ' + isin @) = |z2'|(cos O cos @' — sin O sin 6’ + i(cos @ sin @’ + sin b cos§'))

= |22'|(cos(0 + 0') + isin(6 + 0')) donc arg(z2’) = arg(z) + arg(z’) (mod 27).

On en déduit les deux autres propriétés, dont la deuxieéme par récurrence.
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2.3 Forme exponentielle

2.3.1 Définition

Définition 3
Ecrite avec r = |z| > 0 et un argument 6, la forme exponentielle d’un complexe non nul est

z=re? on e

=cosf +1isiné.

Remarque :

On retrouve alors la célebre formule liant des grands nombres des mathématiques : €™ 4+ 1 = 0.

Connu dans un premier temps par Roger Cotes, cette formule fiit citée par Léonhard Euler dans son
livre d’analyse de 1748 Introductio in analysin infinitorum.

Proposition 5
Pour tous §,p e Ret n € N,

6—19 _ eig7 |619| =1, eleeup _ 61(0-‘1-@).

Démonstration faite en cours.

Exemple
im
Soit z = 1 +1. Alors |z| = v/2 et un argument est 6 = %, puisque z = V2e 4 .

2.3.2 Formules d’Euler

Formules d’Euler ) ) . )
eza: + e—z:r 6’L$ _ e—’LLIJ

cos(x) = 5 , sin(x) = 5

Démonstration faite en cours.
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3 Nombres complexes de module 1

3.1 Formule de de Moivre

Formule de de Moivre
Vo € R,Vn € N,

(cosf +isin @)™ = cos(nf) + isin(nh)

Démonstration faite en cours.

Exemples :
Cette formule permet d’exprimer cos(nx) et sin(nz) en puissance de cos(x) et sin(x).

— cos(3z) = Re[(cos(3z) + isin(3x)] = Re[(cos(z) + isin(z))3] = cos®(x) — 3cos(x)sin(x);
— sin(3x) = Im|(cos(3z) + isin(3x)] = Im[(cos(z) + isin(z))3] = 3cos?(x)sin(z) — sin®(x).

Exercice : simplifier les résultats précédent en les exprimant uniquement avec cos ou sin.

3.2 Linéarisation de cos"(x) et sin™(x)
La linéarisation consiste a écrire cos™(x) ou sin™(z) en une combinaison linéaire de cos(kz) ou sin(kx).

La linéarisation permet de trouver une primitive d’une fonction circulaire.
On utilise conjointement les formules d’Euler et la formule du binéme :

eiw 4 e—ix n eix o e—ix n
n _ N _ )
cos"(x) = ( 5 ) , sin"(x) ( 5 >

jus
Exemple : Linéariser cos® z et sin® z puis calculer Jo? sin® z dx.

. 13
3 <W> _ 1 (e:m 4 3e2iTeir | 3t~ | 6—31‘95)

2 8
_ L i iz TN B i e + et
(e ) L (B
1
= —(cos 3z + 3cos )
eix _ e—ix 3 1 . . . ) ] ‘
? 7

1 3iz ) » 3 1 e3ix _ 6731'96 eix _ efix
- _ 1_3233 3 o 1T - __ 7—3X7
8i (¢ €+ 37— 0 1 < 2 2i

1 . . L., . .
= ——(sin3z — 3sinz) = Z(Ssmx —sin 3z)

5 1 /3% 1 3z]3
/2 sind z dx = 7/2(3sina:—sin33:)dx: - {—3COSIL‘—|- 8 x] i
0 4 Jo 4 0
1 1 2
=—|-04+04+3—-—<-) =<
4 Ho 3) 3
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4 Racines n-iemes de ’unité

Théoreéme 1
Pour un entier n € N*, 'ensemble des solutions dans C de 2" =1 est

2ikm

Uy,={en |ke{0,....,n—1}}.

Démonstration

Ecrivons z = rel?

avec 7 > 0. L’égalité 2” = 1 donne 1" =1 =r =1, et ™ =1 = nh =0 (mod 27).
2k
Dot § = =28 pour un k € Z, et la restriction 0 < k < n fournit les n racines distinctes.
n
Principe
Pour résoudre dans C Péquation 2" = ¢, ol ¢ = pe’® # 0, on se raméne au cas c=1.

En effet, le nombre complexe zy = p}ie n est une racine particuliere de pe’?
On en déduit que :

z\" z
z"zc@z"z(z@”@() =1 —cl,.
20 20

Remarque : Géométriquement, les racines forment un polygone a n cotés.

j 7
h @ | @ - <> |
7 i
n=2 n=23 n=4
2im .
, e’ —j? j
dim
es
1 -1 1
6im
es ) )
eSgr —J ]2
n=>5 n==~6

FIGURE 2 — Racines n-iéme de 1'unité avec polygones réguliers pour n = 1,2,3,4,5,6

Exemples
— Résolution de 26 = —1. On a —1 = €™, donc les solutions sont les e T wk avec w = ezgr et 0 <k <5.
2k + 1w
Donc les racines 6-iéme de —1 sont les €, avec 6§ = (—(’3—)’ et 0 <k <5.

— Résolution de z* = —4. .
On a —4 = 4¢'™, donc les solutions sont les \/ie%ik, c’est-a~dire 1 +¢,—14+4,—1 —det 1 — 1.

Fin de chapitre
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