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1 Représentation d’un nombre complexe
Soit z = a + ib, (a, b) ∈ R2 un nombre complexe.
Dans le plan muni d’un repère orthonormé (O; u⃗, v⃗), on peut associer à z le point M(a, b).
On dit que M est l’image de z.
Réciproquement, à tout point M(a, b) du plan, on peut associer un unique complexe z, défini par
z = a + ib, z est appelé affixe de M ; on dit aussi que z est l’affixe du vecteur −−→

OM .

u⃗

v⃗

O

M(z = a + ib)

a

b
−−→
OM

2 Module et Argument

2.1 Module

Définition 1
Pour z = a + ib, on définit |z| =

√
a2 + b2 =

√
z z ∈ R+.

Proposition 1
On a |z| ≥ 0 avec égalité ⇐⇒ z = 0.

Proposition 2
Pour tout z ∈ C, | Re(z)| ≤ |z| ⇐⇒ z ∈ R+, | Im(z)| ≤ |z| ⇐⇒ z ∈ iR+.

Proposition 3
Pour z1, z2 ∈ C,

— |z1z2| = |z1| |z2|
— |z1 + z2| ≤ |z1| + |z2| [Inégalité triangulaire].

R

iR

0

|z + z′|

|z|

|z′|

Figure 1 – Illustration géométrique de l’inégalité triangulaire dans C.
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Exemple
Dans un parallélogramme, la somme des carrés des diagonales égale la somme des carrés des côtés.
Si les longueurs des côtés sont notées L et l et les longueurs des diagonales sont D et d, alors :

D2 + d2 = 2l2 + 2L2

Démonstration
Considérons le parallélogramme de sommets 0, z, z′ et z + z′. Alors :

D2 + d2 = |z + z′|2 + |z − z′|2 = 2|z|2 + 2|z′|2 = 2l2 + 2L2

Mini-Exercices

1. Calculer 1 − 2i + i

1 − 2i
.

2. Écrire sous la forme a + ib les nombres complexes (1 + i)2, (1 + i)3, (1 + i)4, (1 + i)8.
3. En déduire 1 + (1 + i) + (1 + i)2 + · · · + (1 + i)7.
4. Soit z ∈ C tel que |1 + iz| = |1 − iz|, montrer que z ∈ R.
5. Montrer que si | Re z| ≤ | Re z′| et | Im z| ≤ | Im z′| alors |z| ≤ |z′|, mais que la réciproque est fausse.

6. Montrer que 1
z

= z

|z|2
(pour z ̸= 0).

2.2 Argument et Trigonométrie

Définition 2
Pour z ̸= 0, tout réel θ tel que z = |z|

(
cos θ + i sin θ

)
est un argument de z.

Si θ est un argument, alors θ + 2kπ (k ∈ Z) l’est aussi.

Remarque 1
On peut imposer à cet argument d’être unique si on rajoute la condition θ ∈ [−π, +π].
Alors l’argument est appelé argument principal et est noté Arg(z).

Remarque 2

θ ≡ θ′[2π] ⇐⇒ ∃k ∈ Z, θ = θ′ + 2kπ ⇐⇒
{

cos θ = cos θ′

sin θ = sin θ′

Proposition 4.
L’argument satisfait les propriétés suivantes :

— arg(zz′) ≡ arg(z) + arg(z′)[2π]
— arg(zn) ≡ n arg(z)[2π]
— arg(1/z) ≡ − arg(z)[2π]
— arg(z̄) ≡ − arg(z)[2π]

Démonstration.
zz′ = |z|(cos θ + i sin θ)|z′|(cos θ′ + i sin θ′) = |zz′|(cos θ cos θ′ − sin θ sin θ′ + i(cos θ sin θ′ + sin θ cos θ′))

= |zz′|(cos(θ + θ′) + i sin(θ + θ′)) donc arg(zz′) ≡ arg(z) + arg(z′) (mod 2π).
On en déduit les deux autres propriétés, dont la deuxième par récurrence.
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2.3 Forme exponentielle

2.3.1 Définition

Définition 3
Écrite avec r = |z| > 0 et un argument θ, la forme exponentielle d’un complexe non nul est

z = r eiθ où eiθ = cos θ + i sin θ.

Remarque :
On retrouve alors la célèbre formule liant des grands nombres des mathématiques : eiπ + 1 = 0.
Connu dans un premier temps par Roger Cotes, cette formule fût citée par Léonhard Euler dans son
livre d’analyse de 1748 Introductio in analysin infinitorum.

Proposition 5
Pour tous θ, φ ∈ R et n ∈ N,

e−iθ = eiθ, |eiθ| = 1, eiθeiφ = ei(θ+φ).

Démonstration faite en cours.

Exemple

Soit z = 1 + i. Alors |z| =
√

2 et un argument est θ = π

4 , puisque z =
√

2 e
iπ
4 .

2.3.2 Formules d’Euler

Formules d’Euler
cos(x) = eix + e−ix

2 , sin(x) = eix − e−ix

2i
.

Démonstration faite en cours.
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3 Nombres complexes de module 1

3.1 Formule de de Moivre

Formule de de Moivre
∀θ ∈ R, ∀n ∈ N,

(cos θ + i sin θ) n = cos(nθ) + i sin(nθ)

Démonstration faite en cours.

Exemples :
Cette formule permet d’exprimer cos(nx) et sin(nx) en puissance de cos(x) et sin(x).

— cos(3x) = Re[(cos(3x) + isin(3x)] = Re[(cos(x) + isin(x))3] = cos3(x) − 3cos(x)sin(x) ;
— sin(3x) = Im[(cos(3x) + isin(3x)] = Im[(cos(x) + isin(x))3] = 3cos2(x)sin(x) − sin3(x).

Exercice : simplifier les résultats précédent en les exprimant uniquement avec cos ou sin.

3.2 Linéarisation de cosn(x) et sinn(x)
La linéarisation consiste à écrire cosn(x) ou sinn(x) en une combinaison linéaire de cos(kx) ou sin(kx).
La linéarisation permet de trouver une primitive d’une fonction circulaire.
On utilise conjointement les formules d’Euler et la formule du binôme :

cosn(x) =
(

eix + e−ix

2

)n

, sinn(x) =
(

eix − e−ix

2i

)n

.

Exemple : Linéariser cos3 x et sin3 x puis calculer
∫ π

2
0 sin3 x dx.

cos3 x =
(

eix + e−ix

2

)3

= 1
8
(
e3ix + 3e2ixe−ix + 3eixe−2ix + e−3ix

)
= 1

8
(
e3ix + 3eix + 3e−ix + e−3ix

)
= 1

4

(
e3ix + e−3ix

2 + 3 × eix + e−ix

2

)

= 1
4(cos 3x + 3 cos x)

sin3 x =
(

eix − e−ix

2i

)3

= − 1
8i

(
e3ix − 3e2ixe−ix + 3eixe−2ix − e−3ix

)
= − 1

8i

(
e3ix − 3eix + 3e−ix − e−3ix

)
= −1

4

(
e3ix − e−3ix

2i
− 3 × eix − e−ix

2i

)

= −1
4(sin 3x − 3 sin x) = 1

4(3 sin x − sin 3x)

∫ π
2

0
sin3 x dx = 1

4

∫ π
2

0
(3 sin x − sin 3x) dx = 1

4

[
−3 cos x + cos 3x

3

]π
2

0

= 1
4

(
−0 + 0 + 3 − 1

3

)
= 2

3
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4 Racines n-ièmes de l’unité

Théorème 1
Pour un entier n ∈ N∗, l’ensemble des solutions dans C de zn = 1 est

Un =
{
e

2ikπ
n
∣∣ k ∈ {0, . . . , n − 1}

}
.

Démonstration
Écrivons z = r eiθ avec r > 0. L’égalité zn = 1 donne rn = 1 ⇒ r = 1, et einθ = 1 ⇒ nθ ≡ 0 (mod 2π).
D’où θ = 2kπ

n
pour un k ∈ Z, et la restriction 0 ≤ k < n fournit les n racines distinctes.

Principe
Pour résoudre dans C l’équation zn = c, où c = ρeiθ ̸= 0, on se ramène au cas c = 1.
En effet, le nombre complexe z0 = ρ

1
n e

iθ
n est une racine particulière de ρeiθ.

On en déduit que :
zn = c ⇔ zn = (z0)n ⇔

(
z

z0

)n

= 1 ⇔ z

z0
∈ Un.

Remarque : Géométriquement, les racines forment un polygone à n côtés.

1−1

n = 2

1

j

j2

n = 3

1

i

−1

−i
n = 4

1

e
2iπ

5

e
4iπ

5

e
6iπ

5

e
8iπ

5

n = 5

1

j−j2

−1

−j j2

n = 6

Figure 2 – Racines n-ième de l’unité avec polygones réguliers pour n = 1, 2, 3, 4, 5, 6

Exemples
— Résolution de z6 = −1. On a −1 = eiπ, donc les solutions sont les e

iπ
6 ωk, avec ω = e

2iπ
6 et 0 ≤ k ≤ 5.

Donc les racines 6-ième de −1 sont les eiθ, avec θ = (2k + 1)π
6 , et 0 ≤ k ≤ 5.

— Résolution de z4 = −4.
On a −4 = 4eiπ, donc les solutions sont les

√
2e

iπ
4 ik, c’est-à-dire 1 + i, −1 + i, −1 − i et 1 − i.

Fin de chapitre
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