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1 Convergence d’une suite numérique

1.1 Suites convergentes

Définition
On dit qu’une suite (un) est convergente lorsqu’elle admet une limite ℓ en +∞.

Exemple
Soit (un)n∈N une suite telle que : un = 5

n3 − 9.
Comme lim

n→+∞
(un) = −9 ∈ R alors (un)n∈N est une convergente vers −9.

Proposition
La suite (un) de nombres réels converge vers ℓ ∈ R ssi la suite (|un − ℓ|) converge vers 0.

démonstration
En effet, si (vn) = (|un − ℓ|), on a :
(∀ε > 0, ∃N ∈ N, |un − ℓ| ≤ ε) ⇐⇒ (∀ε > 0, ∃N ∈ N, ∀n ≥ N, 0 ≤ vn ≤ ε)

Exemple
Soit (vn)n∈N une suite telle que : vn = −2n+3

−4n2 + π.
Comme lim

n→+∞
(|vn − π|) = lim

n→+∞
(|−2n+3

−4n2 |) = 0 alors (|vn − π|)n∈N est une convergente vers 0.
Par conséquent, (vn)n∈N est convergente vers π.

1.2 Suites divergentes

Définition
Une suite (un) est dite divergente si elle n’est pas convergente.

Remarque
Une suite est divergente dans deux cas :

— soit sa limite en +∞ est ±∞ ;
— soit (un) n’a pas de limite en +∞.

Exemples

— Soit (λn)n∈N une suite telle que : λn = 3n − 1.
Comme lim

n→+∞
(λn) = +∞, alors la suite (λn)n∈N diverge.

— Soit (ϕn)n∈N une suite telle que : ϕn = (−1)n.
Comme lim

n→+∞
(ϕn) = ±1, alors la limite de la suite (ϕn)n∈N n’est pas finie. Par conséquent, (ϕn)n∈N

diverge.
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2 Suites bornées

2.1 Majorant, minorant

Définitions
Soit (un) une suite de nombres réels.
On dit que :
— (un) est majorée si et seulement si : ∃ M ∈ R, ∀n ∈ N, un ≤ M .

On dit alors que M est un majorant de la suite (un).
— (un) est minorée si et seulement si : ∃ m ∈ R, ∀n ∈ N, un ≥ m.

On dit alors que M est un minorant de la suite (un).
— (un) est bornée si et seulement si (un) est majorée et minorée.

Proposition
Une suite qui converge vers +∞ n’est pas bornée.

démonstration
En effet, si la suite (un) est bornée, il existe M ∈ N tel que, pour tout n ≥ M , on ait un ≤ M .
Or, comme (un) tend vers +∞, il existe N ∈ N tel que, pour tout n ≥ N , on ait un ≥ M + 1.
On a alors : ∀n ≥ N, M + 1 ≤ un ≤ M , ce qui est absurde.

Définition
Soit (un) une suite de nombres réels.
On dit que (un) est bornée ssi elle est minorée et majorée ou en ssi ∃M ∈ R, ∀n ∈ N, |un| ≤

M .

2.2 Caractère borné

Théorème
Soit (un) une suite de nombres réels. Si (un) converge, alors elle est bornée.

démonstration
En effet, si ℓ est la limite de la suite (un), prenons ε = 1 > 0, il existe N1 ∈ N tel que, pour tout
n ≥ N1, on ait un − ℓ ≤ 1.
On a alors, grâce à la seconde inégalité triangulaire : ∀n ≥ N, |un| − |ℓ| ≤ ||un| − |ℓ|| ≤ |un − ℓ| ≤ 1,
donc : |un| ≤ |ℓ|+1. En particulier, si M = max(|u0|, |u1|, . . . , |uN−1|, |ℓ|+1), alors : ∀n ∈ N, |un| ≤ M ,
et donc (un) est bornée.

Remarque
La réciproque est fausse : par exemple, la suite ((−1)n) qui vaut alternativement 1 et −1 est bornée
mais ne converge pas.
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3 Suites Monotones

3.1 Théorème des suites monotones

Définition
On dit qu’elle est monotone si elle est soit croissante, soit décroissante.

Théorème des suites monotones
Toute suite réelle croissante et majorée converge.
Toute suite réelle croissante et non majorée diverge vers +∞.
De même toute suite réelle décroissante et minorée converge.
Toute suite réelle décroissante et non minorée diverge vers −∞.

Donnons une interprétation graphique du théorème des suites monotones dans le cas où un est
croissante. La figure 23.6 est un exemple de suite croissante est majorée par M . Puisque les termes
un sont de plus en plus grands mais sont soumis au plafond M , il est clair qu’il doivent finalement
tendre vers une "asymptote" de hauteur L ≤ M . Ainsi la suite un converge bien (vers L). On notera
qu’il n’y a aucune raison pour que L = M , et le théorème des suites monotones ne donne jamais la
valeur de la limite en cas de convergence.

n

un

M

L

Figure 23.6 - Suite croissante majorée
n

un

Figure 23.7 - Suite croissante non majorée

De même, la figure 23.7 donne un exemple de suite croissante mais non majorée : cela signifie que,
quel que soit le nombre M donné, il existe un uN > M (puisque M ne peut être un majorant).
Alors un ≥ M pour tout n ≥ N car un est croissante. Comme M est arbitrairement grand, cela signifie
que limn→+∞ un = +∞.

Exemple
Soit la suite vn définie par son premier terme v0 = 1 et la relation de récurrence

vn+1 = v3
n + 1

3
Démontrons d’abord par récurrence que la suite vn est décroissante.
Il s’agit donc de démontrer par récurrence que, pour tout n ∈ N, vn+1 ≤ vn.
Initialisation : la propriété est vraie pour n = 0.
En effet v1 = 1

3(v3
0 + 1) = 2

3 , donc v1 ≤ v0.
Hérédité : supposons que, pour un n donné, vn+1 ≤ vn.
Alors v3

n+1 ≤ v3
n, donc v3

n+1 + 1 ≤ v3
n + 1, et finalement

v3
n+1 + 1

3
≤ v3

n + 1
3

,
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c’est-à-dire vn+2 ≤ vn+1. On a donc démontré par récurrence que la suite vn est décroissante.
Démontrons maintenant, ce qui s’observe également sur le graphique, que la suite vn est minorée
par 0, c’est-à-dire que pour tout n ∈ N, vn ≥ 0.
Initialisation : la propriété est vraie pour n = 0, car v0 = 1 ≥ 0.
Hérédité : supposons que, pour un n donné, on a vn ≥ 0. Alors

vn+1 = v3
n + 1

3
≥ 1

3
≥ 0.

On a donc démontré par récurrence que la suite vn est minorée par 0 (en fait, on a même démontré
qu’elle était minorée par 1

3).
La suite vn est donc décroissante et minorée. Ainsi elle converge en vertu du théorème des suites
monotones. Sa limite s’obtient en passant à la limite dans la relation de récurrence vn+1 = 1

3
(
v3

n + 1
)
.

En effet, quand n → +∞, vn se rapproche indéfiniment de L, et bien entendu il en de même pour
vn+1, car n + 1 → +∞ également. A la limite, on a donc

L = L3 + 1
3

⇔ L3 − 3L + 1 = 0.

Ainsi L est une solution de l’équation x3 − 3x + 1 = 0, qui peut donc être approchée
numériquement par les valeurs successives de vn (voir Exemple 23.2).

Exemple 23.9 Soit un définie pour tout n ≥ 1 par

un =
n∑

k=1

1
k2 = 1

12 + 1
22 + · · · + 1

n2 .

Pour tout n ≥ 1, on a un+1 − un = 1
(n+1)2 ≥ 0. Ainsi un+1 ≥ un, et la suite un est donc croissante.

Montrons qu’elle est majorée. Si k ≥ 2, on a

1
k2 ≤ 1

k(k − 1)
= 1

k − 1
− 1

k
.

En sommant ces inégalités pour k = 2, 3, . . . , n, il vient
n∑

k=2

1
k2 ≤

n∑
k=2

( 1
k − 1

− 1
k

)
.

Or la dernière somme est télescopique (Exemple 22.12) et vaut 1 − 1
n . Pour tout n ≥ 2, on a donc

un = 1 +
n∑

k=2

1
k2 ≤ 1 +

(
1 − 1

n

)
≤ 2.

Ainsi un est croissante et majorée par 2. Donc elle converge d’après le théorème des suites monotones.
On notera que sa limite n’est pas égale à 2. On peut en effet montrer que limn→+∞ un = π2

6 .
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4 Limites de suites et Comparaison

4.1 Théorème de comparaison

Théorème
Soit u et v deux suites.
Si pour tout entier naturel n supérieur à un certain entier naturel n0,
— un ≤ vn et lim

n→+∞
(un) = +∞, alors limn→+∞ vn = +∞

— un ≤ vn et lim
n→+∞

(vn) = −∞, alors limn→+∞ un = −∞

Démonstration
Il s’agit de prouver que tout intervalle ouvert de la forme ]A; +∞[, avec A un réel quelconque, contient
tous les termes de la suite v à partir d’un certain rang.
— lim

n→+∞
(un) = +∞ donc par définition, l’intervalle ]A; +∞[ contient tous les termes un à partir

d’un certain rang. Notons p ce rang.
On sait aussi qu’à partir du rang n0, un ≤ vn. Notons N le plus grand des deux entiers n0 et p.
À partir du rang N , l’intervalle ]A; +∞[ contient tous les termes un et donc à fortiori tous les
termes vn puisque l’inégalité un ≤ vn est alors vérifiée.
Ceci étant vrai quel que soit le réel A, on a bien lim

n→+∞
(vn) = +∞.

— Démonstration analogue. (À faire chez soi en exercice)
Exemple
Soit (un) la suite définie pour tout entier naturel n par un = n + (−1)n.
1. Justifier que la suite n’est pas monotone.
2. Déterminer sa limite quand n tend vers ∞.

4.2 Théorème d’encadrement

Théorème
Soit u, v et w trois suites telles que :
— vn ≤ un ≤ wn à partir d’un certain rang n0,
— v et w convergent vers la même limite l,
— alors la suite u converge et sa limite est l.

Remarques

— Le théorème d’encadrement est également nommé "théorème des gendarmes".
— Le théorème d’encadrement ne s’applique qu’à des suites convergentes ; dans le cas où les suites

(vn) et (wn) divergent vers l’infini, le théorème de comparaison suffit.

Exemple
Étudier la convergence de la suite u définie pour tout entier naturel n non nul par un = 2+3 cos n

n .
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4.3 Limite d’une suite géométrique

Soit u une suite géométrique définie sur N, de raison q non nulle.
Alors pour tout entier naturel n, un = u0 × qn.
D’après les théorèmes sur les opérations et les limites, pour déterminer le comportement de la suite u
à l’infini, il suffit de connaître celui de la suite v définie par vn = qn.

Théorème
Soit q un réel.

— Si q ≤ −1 : la suite (qn) n’a pas de limite.
— Si −1 < q < 1 : la suite (qn) converge vers 0.
— Si q = 1 : la suite (qn) converge vers 1.
— Si q > 1 : la suite (qn) diverge vers +∞.

Démonstration dans le cas où q > 1, exigible BAC : q > 1.
Posons alors q = 1 + a avec a > 0.
a) Montrons par récurrence que ∀n ∈ N, (1 + a)n ≥ 1 + na. Soit Pn : ⟨(1 + a)n ≥ 1 + na⟩ :
— Initialisation : (1 + a)0 = 1 et 1 + 0 × a = 1 donc P0 est vraie.
— Hérédité : Supposons Pn vraie pour un certain n fixé et montrons alors que Pn+1 est vraie.

Hypothèse de récurrence : Pn : ⟨(1 + a)n ≥ 1 + na⟩
Ce que l’on veut montrer : Pn+1 : ⟨(1 + a)n+1 ≥ 1 + (n + 1)a⟩

(1 + a)n+1 = (1 + a)n × (1 + a)

Or (1 + a)n ≥ 1 + na (Hypothèse de récurrence)
Donc (1 + a)n × (1 + a) ≥ (1 + na)(1 + a) (car 1 + a > 0)
Donc (1 + a)n+1 ≥ 1 + (n + 1)a + na2

Donc (1 + a)n+1 ≥ 1 + (n + 1)a (car na2 ≥ 0).
Donc Pn+1 est vraie.

— Conclusion : La proposition Pn est vraie au rang 0, de plus elle est héréditaire, donc elle est
vraie pour tout entier naturel n. Donc ∀n ∈ N, (1 + a)n ≥ 1 + na

b) Retour à la démo :
On a donc : ∀n ∈ N, qn ≥ 1 + na avec a > 0.
Or limn→+∞ 1 + na = +∞ donc d’après le théorème de comparaison, limn→+∞ qn = +∞
Exemples
1. Déterminer la limite de la suite u définie sur N par un = −5(

√
3)n.

2. Déterminer la limite de la suite v définie sur N par vn = −3(1 −
√

2)n.
3. Déterminer la limite de la suite w définie sur N par wn = 1 + 1

2 + 1
22 + . . . + 1

2n .
4. La suite z définie sur N par zn = 3n+1

(−2)n a-t-elle une limite ?

Solutions
1.

√
3 > 1 donc limn→+∞(

√
3)n = +∞ donc limn→+∞ un = −∞.

2. 1 −
√

2 ∈ [−1; 1[ donc limn→+∞(1 −
√

2)n = 0 donc limn→+∞ vn = 0.

3. Pour tout n ∈ N, wn = 1−( 1
2 )n+1

1− 1
2

= 2
(

1 −
(

1
2

)n+1
)

. Or 1
2 ∈ [−1; 1[, donc limn→+∞

(
1
2

)n+1
= 0,

donc limn→+∞ wn = 2.
4. Pour tout n ∈ N, zn = 3n+1

(−2)n = 3× 3n

(−2)n = 3×
(
−3

2

)n
. Or −3

2 < −1 donc
(
−3

2

)n
n’a pas de limite,

donc la suite z non plus.
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5 Pour aller plus loin

5.1 Théorème des suites adjacentes

Le second théorème d’existence de limite est le théorème des suites adjacentes.

Définition
On dit que les suites réelles un et vn sont adjacentes si l’une est croissante, l’autre décroissante,

et si
limn→+∞ (un − vn) = 0.

Exemple
Soient un =

∑n
k=1

1
k2 et vn = un + 1

n =
∑n

k=1
1

k2 + 1
n .

Dans l’exemple 23.9, on a montré que (un) est croissante.
Montrons que (vn) est décroissante. On a

vn+1 − vn = 1
(n + 1)2 + 1

n + 1
− 1

n
= n + n (n + 1) − (n + 1)2

(n + 1)2 n
= − 1

(n + 1)2 n
.

Ainsi vn+1 − vn ≤ 0, donc (vn) est décroissante. Enfin vn − un = 1
n tend vers 0 lorsque n → +∞.

Ces deux suites sont donc adjacentes.

Theoreme [Théorème des suites adjacentes]
Si les suites un et vn sont adjacentes, alors elles convergent toutes les deux vers la même limite.

Le théorème des suites adjacentes est schématisé par la figure ci-dessous :

n

Valeurs

ℓ

n1 n2 n3 n4 n5 n6 n7

un ≤ ℓ ≤ vn

lim(vn − un) = 0

Figure 1 – Représentation graphique du théorème des suites adjacentes.

Démonstration
Supposons que un est croissante et vn décroissante ; alors la suite εn = vn − un est décroissante.
En effet un+1 − un ≥ 0 et vn+1 − vn ≤ 0, donc εn+1 − εn = (vn+1 − vn) − (un+1 − un) ≤ 0.
En outre εn converge vers 0, puisque un et vn sont adjacentes. Cela impose à la suite εn d’être positive.
En effet, si pour un certain rang n0 on a εn0 < 0, alors pour n ≥ n0 on aura εn ≤ εn0 < 0 car εn

décroît ; par passage à la limite il vient 0 = lim εn ≤ εn0 < 0, ce qui est absurde.
On peut donc affirmer, en utilisant les monotonies, que pour tout n ∈ N, u0 ≤ un ≤ vn ≤ v0.
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La suite un est donc croissante et majorée par v0.
Elle converge d’après le théorème des suites monotones.
De même vn converge en tant que suite décroissante et minorée par u0.
Enfin puisque εn = vn − un tend vers 0 lorsque n → +∞, les limites de un et vn sont identiques.

Remarque
Sous les hypothèses de la démonstration, notons ℓ la limite commune aux deux suites un et vn.
Alors pour tout n ∈ N,

un ≤ ℓ ≤ vn

En d’autres termes un est une valeur approchée par défaut de ℓ à εn près et vn est une valeur approchée
par excès de ℓ à εn près.

Exemple
Soient les suites un et vn de l’exemple 23.10. Ces deux suites sont adjacentes et convergent donc
vers la même limite ℓ. Ici εn = vn − un = 1

n . Donc un est une valeur approchée par défaut de ℓ à 1
n

près. Pour avoir une valeur approchée de ℓ à 10−2 près, il suffit de prendre n = 100.
La convergence de un et vn vers ℓ est donc d’ordre 1

n .

5.2 Suites extraites

Définition
Soit un une suite de nombres réels ou complexes.
Une suite extraite de un est une suite de la forme un1 , un2 , . . . , unp , . . . , où n1 < n2 < . . . <

np < . . .
est une suite strictement croissante d’entiers naturels.

Les exemples les plus simples de suites extraites sont la suite des termes de rang pair u2p et la suite
des termes de rang impair u2p+1 (voir exemple 23.5). Un exemple plus exotique est donné par la suite
u2, u3, u5, . . . , up, . . . des termes correspondant aux indices qui sont des nombres premiers.

Le théorème de Bolzano-Weierstrass s’énonce ainsi :

Théoreme[Bolzano-Weierstrass]
De toute suite réelle bornée on peut extraire une sous-suite convergente.
Autrement dit, si a ≤ un ≤ b pour tout entier n, alors il existe un réel ℓ et une sous-suite unp tels

que
limp→∞ unp = ℓ ∈ [a, b].

Démonstration
Voir exercice 23.16.
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6 Exercices

6.1 Les basiques

Exercice 1
Soit un définie par son premier terme u0 = 1

2 et la relation de récurrence un+1 =
√

2un.

1. Démontrer par récurrence que un est croissante et majorée par 2.
Conclusion ? Calculer limn→+∞ un.

2. Représenter graphiquement f (x) =
√

2x sur [0, +∞[. Utiliser ce graphique pour vérifier les résul-
tats précédents.

Exercice 2
Soit un définie par son premier terme u0 = 7 et la relation de récurrence un+1 = −1

2un + 6.
Démontrer que la suite vn = un − 5 est une suite géométrique. En déduire que un est convergente et
trouver sa limite.

Exercice 3
On pose

un =
n∑

k=0

1
k!

= 1 + 1
1!

+ 1
2!

+ · · · + 1
n!

et vn = un + 1
n · n!

.

Démontrer que un et vn sont adjacentes.

Exercice 4
Soit un définie par u0 = 1 et un+1 = 1

4u2
n + 1.

1. Démontrer que un > 0 pour tout n ∈ N.
2. Démontrer par récurrence que un est croissante.
3. Démontrer par récurrence que un est majorée par 2. Qu’en conclut-on ?
4. Calculer limn→+∞ un.
5. Que se passe-t-il si la suite un vérifie la même relation de récurrence, mais avec un premier terme

u0 = 3 ?

Exercice 5
Soit un définie par u0 = 0 et un+1 = −1

3u2
n + 1.

1. Étudier un sur un graphique. Que remarque-t-on ?
2. Montrer que, pour tout n ∈ N, 0 ≤ un ≤ 1.
3. On considère les suites extraites vn = u2n et wn = u2n+1.

Démontrer par récurrence que vn est croissante et wn est décroissante.
En déduire que vn et wn sont convergentes.

4. Montrer que vn et wn ont la même limite. Que peut-on dire de vn et wn ?
5. En déduire que la suite un est convergente et calculer sa limite.

Exercice 6
Soit un = 1

nr

∑n
k=1 k5.

Démontrer que 0 ≤ un ≤ 1
n pour tout n ∈ N∗.

En déduire que un est convergente et trouver sa limite.

Exercice 7
Soit un = 1

n+1 + 1
n+2 + · · · + 1

2n (n ≥ 1).

1. Écrire un grâce au signe
∑

.

10
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2. Démontrer que un est croissante.
3. En observant que 1

n+k ≤ 1
n pour tout k ≥ 0, démontrer que un ≤ 1 pour tout n ≥ 1. Conclusion ?

4. Représenter graphiquement la fonction f(x) = 1
1+x sur [0, 1].

5. En remarquant que
un = 1

n
× 1

1 + 1
n

+ 1
n

× 1
1 + 2

n

+ · · · + 1
n

× 1
1 + 1

,

interpréter un comme une somme de surfaces de rectangles sur le graphique précédent.
6. Que deviennent ces rectangles lorsque n → +∞ ? En déduire limn→+∞ un.

Exercice 8
Soient un =

∑n−1
k=1

1
k2(k+1)2 et vn = un + 1

3n2 .
Montrer que un et vn sont convergentes.

Exercice 9
On pose Sn =

∑n
k=1

(
−1
k

)k
.

Montrer que les suites extraites un = S2n et vn = S2n+1 sont adjacentes.
En déduire la convergence de Sn.

Exercice 10
Cet exercice présente, sous une forme modernisée, un procédé de calcul de

√
2 figurant sur une tablette

d’argile provenant des fouilles de Babylone.
La suite un est définie par u0 = 2 et la relation de récurrence

un+1 = 1
2

( 2
un

+ un

)
= f(un).

1. Calculer u1, u2, u3 sous forme de fractions.
2. Démontrer par récurrence que un ≥ 0 pour tout n ∈ N.

3. Démontrer que, pour tout n ≥ 0, un+1 −
√

2 = 1
2un

(
un −

√
2
)2

. En déduire que, pour tout n ∈ N,
un ≥

√
2.

4. Exprimer un+1 − un en fonction de un. En déduire que la suite un est décroissante.
5. Démontrer que la suite un est convergente et calculer sa limite.
6. Pour tout n ∈ N, on pose vn = 2

un
. Démontrer que un et vn sont adjacentes.

7. Déduire de ce qui précède un encadrement de
√

2, permettant d’obtenir une valeur approchée de√
2 avec quatre décimales exactes.

6.2 Les techniques

Exercice 11
Soient un et vn définies pour n ≥ 2 par

un =
n−1∑
k=1

1
k

− ln n et vn =
n∑

k=1

1
k

− ln n.

1. Montrer la double inégalité (I) : pour tout x ≥ 0, x
1+x ≤ ln (1 + x) ≤ x.

2. Montrer que les suites un et vn sont adjacentes. Leur limite commune s’appelle la constante d’Euler
et se note γ. Comment peut-on calculer une valeur approchée de γ à 10−2 près ?

3. Interpréter un à l’aide d’une somme de surfaces et de la représentation graphique de y = 1
x .

11
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Exercice 12
Soit la suite un =

n∑
k=1

1√
(n + k) (n + k + 1)

.

1. Montrer que un est bornée.
2. Montrer que un est convergente et donner un encadrement de sa limite.

Exercice 13
On définit un par u1 = 3 et un+1 = e−un

n
pour tout n ≥ 1.

Étudier la convergence de cette suite.

Exercice 14
Pour tout entier n ≥ 1, on considère l’équation xn + x − 1 = 0 (En), où l’inconnue x est recherchée
dans ]0, +∞[.
1. Résoudre l’équation (En) pour n = 1 et n = 2.
2. Étudier les variations de la fonction x → xn + x − 1 sur [0, +∞[ pour n ≥ 1. En déduire que

l’équation (En) admet une et une seule racine positive qu’on notera xn et montrer que 0 < xn < 1
pour tout n ≥ 1.

3. Déterminer l’ensemble de définition D de la fonction

f (x) = ln (1 − x)
ln x

et prouver que f est strictement croissante sur D.
4. Montrer que f (xn) = n pour tout n ≥ 1.
5. Prouver que la suite xn est strictement croissante.
6. En déduire la convergence de la suite xn vers un nombre réel L, et préciser la valeur de L.

Exercice 15
Soit un une suite convergente de nombres réels ou complexes.
Démontrer que sa limite est unique.

6.3 Les exotiques et les olympiques

Exercice 16 [(Bolzano-Weierstrass avec vue sur la mer)]
Soit un une suite réelle.
On dit que l’entier n a vue sur la mer si pour tout p ≥ n, up ≤ un.
On note A l’ensemble des entiers qui ont vue sur la mer.
1. Montrer que, si A est infini, il existe une suite extraite de un décroissante.
2. Montrer que, si A est fini, il existe une suite extraite de un croissante.
3. Démontrer le théorème de Bolzano-Weierstrass.

Exercice 17
Pour toute suite u1, u2, . . . , un, . . . de nombres réels, on considère la moyenne de ses n premiers termes

vn = u1 + u2 + · · · + un

n
.

1. On suppose que limn→+∞ un = 0. Démontrer que limn→+∞ vn = 0.
2. En déduire le théorème de la moyenne de Césaro : si la suite un converge vers ℓ, alors vn converge

vers ℓ.

12
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Exercice 18[(Moyenne arithmético-géométrique de Gauss)]
Soient a et b deux nombres réels avec 0 < a ≤ b.
On définit les suites an et bn par a0 = a, b0 = b, et les relations de récurrence

an+1 =
√

anbn, bn+1 = an + bn

2
pour tout n ∈ N.

1. Démontrer que an ≤ bn pour tout n ∈ N.
2. Démontrer que les suites an et bn sont adjacentes. Leur limite commune M(a, b) s’appelle la

moyenne arithmético-géométrique de a et b.
3. Calculer M(1, 2) avec 7 décimales exactes.

Fin de chapitre
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