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1 Convergence d’une suite numérique

1.1 Suites convergentes

Définition
On dit qu’une suite (u,) est convergente lorsqu’elle admet une limite ¢ en 4o00.

Exemple
Soit (un)nen une suite telle que : u, = % —9.
Comme lim (u,) = —9 € R alors (uy)nen est une convergente vers —9.
n——4o0o
Proposition

La suite (uy,) de nombres réels converge vers ¢ € R ssi la suite (Ju, — ¢|) converge vers 0.

démonstration
En effet, si (v,) = (Jup, —£]), on a :
(Ve>0, INeN, |u,—¥<¢e) < (Ve>0, INeNVn>N, 0<uv,<e¢)

Exemple

Soit (vn)nen une suite telle que : v, = __2";;3 + .

Comme 11IJ1£1 (lon —7|) = hm ( =21431) = 0 alors (|Jup — 7|)nen est une convergente vers 0.
n—

Par conséquent, (v,)nen est convergente vers .

1.2 Suites divergentes

Définition
Une suite (u,) est dite divergente si elle n’est pas convergente.

Remarque
Une suite est divergente dans deux cas :

— soit sa limite en +00 est 00

— soit (u,) n’a pas de limite en +o0.

Exemples

— Soit (An)nen une suite telle que : A, = 3n — 1.
Comme lim (\,) = +o0, alors la suite (A, )nen diverge.
n——+00

— Soit (¢n)nen une suite telle que : ¢, = (—1)".
Comme hm (gbn) +1, alors la limite de la suite (¢, )nen n'est pas finie. Par conséquent, (¢, )nen

dlverge
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2 Suites bornées

2.1 Majorant, minorant

Définitions
Soit (uy,) une suite de nombres réels.
On dit que :
— (up) est majorée si et seulement si: 3 M € R, VneN, wu, <M.
On dit alors que M est un majorant de la suite (uy,).

— (uy) est minorée si et seulement si: 3m e R, VneN, wu, >m.
On dit alors que M est un minorant de la suite (u,).

— (uy) est bornée si et seulement si (uy,) est majorée et minorée.

Proposition
Une suite qui converge vers +o0o n’est pas bornée.

démonstration

En effet, si la suite (u,) est bornée, il existe M € N tel que, pour tout n > M, on ait u, < M.
Or, comme (uy,) tend vers +o0, il existe N € N tel que, pour tout n > N, on ait u, > M + 1.
Onaalors:Vn>N, M+1<wu, <M, cequi est absurde.

Définition
Soit (uy,) une suite de nombres réels.

On dit que (uy,) est bornée ssi elle est minorée et majorée ou en ssi IM € R, Vn €N, |u,| <
M.

2.2 Caractére borné

Théoréme
Soit (uy,) une suite de nombres réels. Si (u,) converge, alors elle est bornée.

démonstration

En effet, si £ est la limite de la suite (u,), prenons ¢ = 1 > 0, il existe N1 € N tel que, pour tout

n > Ni, on ait u, — £ < 1.

On a alors, grice a la seconde inégalité triangulaire : Vn > N, |u,| — [£] < ||un| = |¢|] < Jun — 4] < 1,
donc : |u,| < |¢|+1. En particulier, si M = maz(|uo|, |uil, ..., |un—1], |¢|+1), alors : Vn € N, |u,| < M,
et donc (uy) est bornée.

Remarque
La réciproque est fausse : par exemple, la suite ((—1)"™) qui vaut alternativement 1 et —1 est bornée
mais ne converge pas.
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3 Suites Monotones

3.1 Théoréme des suites monotones

Définition
On dit qu’elle est monotone si elle est soit croissante, soit décroissante.

Théoréme des suites monotones
Toute suite réelle croissante et majorée converge.
Toute suite réelle croissante et non majorée diverge vers +oo.
De méme toute suite réelle décroissante et minorée converge.
Toute suite réelle décroissante et non minorée diverge vers —oo.

Donnons une interprétation graphique du théoreme des suites monotones dans le cas ol u,, est
croissante. La figure 23.6 est un exemple de suite croissante est majorée par M. Puisque les termes
uy sont de plus en plus grands mais sont soumis au plafond M, il est clair qu’il doivent finalement
tendre vers une "asymptote" de hauteur L < M. Ainsi la suite u,, converge bien (vers L). On notera
qu’il n’y a aucune raison pour que L = M, et le théoreme des suites monotones ne donne jamais la
valeur de la limite en cas de convergence.

Up, Up, . /

Mp----mmmmmm e ,
Lr------------ . e T e e e -
n n
Figure 23.6 - Suite croissante majorée Figure 23.7 - Suite croissante non majorée

De méme, la figure 23.7 donne un exemple de suite croissante mais non majorée : cela signifie que,
quel que soit le nombre M donné, il existe un uy > M (puisque M ne peut étre un majorant).
Alors u,, > M pour tout n > N car u, est croissante. Comme M est arbitrairement grand, cela signifie
que limy,— 4 Uy, = +00.

Exemple
Soit la suite v,, définie par son premier terme vg = 1 et la relation de récurrence
v 41

3

Un4+1 =

Démontrons d’abord par récurrence que la suite v,, est décroissante.

Il s’agit donc de démontrer par récurrence que, pour tout n € N, v,11 < vy,.
Initialisation : la propriété est vraie pour n = 0.

En effet v; = %(1}8 +1)= %, donc v1 < vy.

Hérédité : supposons que, pour un n donné, vy < Up.

Alors v3 ; < v, donc v}, +1 < v} +1, et finalement

U%+1+1<Ug+1
3 - 37
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c’est-a-dire vy 12 < vp41. On a donc démontré par récurrence que la suite v, est décroissante.
Démontrons maintenant, ce qui s’observe également sur le graphique, que la suite v,, est minorée
par 0, c’est-a-dire que pour tout n € N, v,, > 0.

Initialisation : la propriété est vraie pour n =0, car vg =1 > 0.

Hérédité : supposons que, pour un n donné, on a v, > 0. Alors

v+1

> 0.
3

co\»—n

Un41 =

On a donc démontré par récurrence que la suite v, est minorée par 0 (en fait, on a méme démontré
qu’elle était minorée par %)

La suite v, est donc décroissante et minorée. Ainsi elle converge en vertu du théoréme des suites
monotones. Sa limite s’obtient en passant d la limite dans la relation de récurrence v,41 = 5 (v +1).
En effet, quand n — 400, v, se rapproche indéfiniment de L, et bien entendu il en de meme pour
Up+1, €ar n + 1 — 400 également. A la limite, on a donc

L3+1

3 s I3 —3L+1=0.

L=

Ainsi L est une solution de I’équation =3 — 3z + 1 = 0, qui peut donc étre approchée
numériquement par les valeurs successives de vy, (voir Exemple 23.2).

Exemple 23.9 Soit u,, définie pour tout n > 1 par
Z": 1 1 A 1
= k2 12 n2’

Pour tout n > 1, on a upy1 — up = ﬁ > 0. Ainsi upy1 > up, et la suite u,, est donc croissante.
Montrons qu’elle est majorée. Si k > 2, on a

o1t _ 1 1
k2~ k(k—1) k-1 k
En sommant ces inégalités pour k = 2,3, ...,n, il vient
S ey ()
= k2 o \k—1 &k '

Or la derniére somme est télescopique (Exemple 22.12) et vaut 1 — % Pour tout n > 2, on a donc

1
un_1+2<1+(1—)§2.

n

Ainsi u,, est croissante et majorée par 2. Donc elle converge d’apres le théoréme des suites monotones.
o . R ) 2
On notera que sa limite n’est pas égale a 2. On peut en effet montrer que lim;, 1 o0 up = -
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4 Limites de suites et Comparaison

4.1 Théoreme de comparaison

Théoréme
Soit u et v deux suites.
Si pour tout entier naturel n supérieur & un certain entier naturel ny,

— u, <, et ngrfoo(un) = +00, alors limy, 1o vy = +00

— up < v, et lim (vy) = —o0, alors limy, 400 Uy = —00
n—-+o0o

Démonstration

Il s’agit de prouver que tout intervalle ouvert de la forme |A; 00|, avec A un réel quelconque, contient
tous les termes de la suite v & partir d’un certain rang.

1irJrrl (un) = 400 donc par définition, l'intervalle |A;+oo[ contient tous les termes u, a partir
n—-+0oo

d’un certain rang. Notons p ce rang.

On sait aussi qu’a partir du rang ng, u, < v,. Notons N le plus grand des deux entiers ng et p.

A partir du rang N, l'intervalle ]A; +-oo[ contient tous les termes u, et donc & fortiori tous les
termes v, puisque 'inégalité u,, < v, est alors vérifiée.

Ceci étant vrai quel que soit le réel A, on a bien lim (v,) = 4o0.
n—-+o0o

— Démonstration analogue. (A faire chez soi en exercice)

Exemple
Soit (uy) la suite définie pour tout entier naturel n par u, =n + (—1)".

1. Justifier que la suite n’est pas monotone.

2. Déterminer sa limite quand n tend vers oco.

4.2 Théoréme d’encadrement

Théoréme
Soit u, v et w trois suites telles que :

— vp < uy < w, a partir d’'un certain rang ng,
— v et w convergent vers la méme limite [,

— alors la suite u converge et sa limite est [.

Remarques

— Le théoreme d’encadrement est également nommé "théoreme des gendarmes".

— Le théoréme d’encadrement ne s’applique qu’a des suites convergentes ; dans le cas ou les suites
(vp) et (wy) divergent vers 'infini, le théoréme de comparaison suffit.

Exemple

Etudier la convergence de la suite u définie pour tout entier naturel n non nul par u, = M’%
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4.3 Limite d’une suite géométrique

Soit u une suite géométrique définie sur N, de raison ¢ non nulle.

Alors pour tout entier naturel n, u, = ug x ¢".

D’apres les théoremes sur les opérations et les limites, pour déterminer le comportement de la suite u
a linfini, il suffit de connaitre celui de la suite v définie par v, = ¢".

Théoréme
Soit ¢ un réel.

— Sig < —1:la suite (¢") n’a pas de limite.
— Si —1 < ¢ < 1: lasuite (¢") converge vers 0.
— Si g =1 : la suite (¢") converge vers 1.

— Si ¢ >1:lasuite (¢") diverge vers +oo.

Démonstration dans le cas ou ¢ > 1, exigible BAC : ¢ > 1.

Posons alors ¢ =1+ a avec a > 0.

a) Montrons par récurrence que Vn € N, (1 +a)™ > 1+ na. Soit P, : ((1+a)" > 1+ na) :

— Initialisation : (1+a)’ =1et 1+ 0 x a =1 donc Py est vraie.

— Hérédité : Supposons P, vraie pour un certain n fixé et montrons alors que P, est vraie.
Hypothese de récurrence : P, : ((1+a)" > 1+ na)
Ce que I'on veut montrer : P,yq : (1 +a)"" > 1+ (n+1)a)

1+a)" =(1+a)" x (1 +a)

Or (1+a)™ > 1+ na (Hypothese de récurrence)
Donc (1 +a)" x (1+a) > (1+na)(l+a) (car 1 +a > 0)
Donc (1 +a)"™ > 1+ (n+ 1)a + na?
Donc (1 + a)"™ > 1+ (n+ 1)a (car na® > 0).
Donc P, est vraie.
— Conclusion : La proposition P, est vraie au rang 0, de plus elle est héréditaire, donc elle est
vraie pour tout entier naturel n. Donc Vn € N, (14 a)” > 1+ na
b) Retour & la démo :

On a donc : Vn € N, ¢" > 1 4 na avec a > 0.
Or limy,— 400 1 + na = 400 donc d’apres le théoreme de comparaison, lim,,— 4. ¢" = +00
Exemples

1. Déterminer la limite de la suite u définie sur N par u, = —5(v/3)".

2. Déterminer la limite de la suite v définie sur N par v, = —3(1 — v/2)".

3. Déterminer la limite de la suite w définie sur N par w, = 1+ % + 2% 4+ ...+ 2%

4. La suite z définie sur N par z, = % a-t-elle une limite ?

Solutions
1. v/3 > 1 donc lim,_ 1o (v/3)" = 400 donc limy, o0 U, = —00.
2.1-+2¢ [—1; 1] donc limy,—y4o0(1 — V2)" = 0 donc limy,_ 4 o0 vy = 0.
_(1yt! +1 +1
3. Pour tout n € N, w,, = % =2 (1 — (%)n ) Or % € [-1;1], donc limy, 4 (%)n =0,

donc limy, 400 wy = 2.

NI

4. PourtoutnEN,zn:%:3x(_2)n :3><(—

donc la suite z non plus.

[][eV]

)n. Or —% < —1 donc (—%)n n’a pas de limite,
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5 Pour aller plus loin

5.1 Théoréme des suites adjacentes

Le second théoreme d’existence de limite est le théoreme des suites adjacentes.

Définition
On dit que les suites réelles u, et v, sont adjacentes si I'une est croissante, I’autre décroissante,
et si

limy, 400 (Un, — vp) = 0.

Exemple

Soient u, = Y 14 k% et v, = u, + % =31 ]?12 + %
Dans I'exemple 23.9, on a montré que (u,,) est croissante.
Montrons que (vy,) est décroissante. On a

L1 1 nt+nm+1)—(n+1)* 1
(n+1)?%* n+1 n (n+1)>%n (n+1)*n’

Un4+1 — Un =

Ainsi v, 41 — v, <0, donc (vy,) est décroissante. Enfin v,, — u,, = % tend vers 0 lorsque n — +oo.
Ces deux suites sont donc adjacentes.

Theoreme [Théoréme des suites adjacentes]
Si les suites u, et v, sont adjacentes, alors elles convergent toutes les deux vers la méme limite.

Le théoréme des suites adjacentes est schématisé par la figure ci-dessous :

Valeurs Up <L < vp
lim(vy, — un) =0
°
°
[ ]
o
° °
| °
v
°
[ ]
°
n

nG M2 N3 N4 Ny Ng N7
FIGURE 1 — Représentation graphique du théoreme des suites adjacentes.

Démonstration

Supposons que u, est croissante et v, décroissante; alors la suite &, = v, — u,, est décroissante.

En effet upq1 —up >0 et v — vy, <0, done €41 — € = (Vpg1 — Un) — (Upg1 — uyp) < 0.

En outre €, converge vers 0, puisque u, et v, sont adjacentes. Cela impose & la suite &,, d’étre positive.
En effet, si pour un certain rang ng on a €,, < 0, alors pour n > ng on aura ¢, < e,, <0 car ¢,
décroit ; par passage a la limite il vient 0 = lime,, < &,, < 0, ce qui est absurde.

On peut donc affirmer, en utilisant les monotonies, que pour tout n € N, ug < u,, < v, < vg.
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La suite u,, est donc croissante et majorée par vy.

Elle converge d’apres le théoreme des suites monotones.

De méme v,, converge en tant que suite décroissante et minorée par ug.

Enfin puisque &, = v, — u,, tend vers 0 lorsque n — 400, les limites de u,, et v, sont identiques.

Remarque
Sous les hypotheses de la démonstration, notons £ la limite commune aux deux suites u, et vy.
Alors pour tout n € N,

up, << vy,

En d’autres termes u,, est une valeur approchée par défaut de £ a e, pres et v, est une valeur approchée
par excés de £ a g, pres.

Exemple
Soient les suites u, et v, de 'exemple 23.10. Ces deux suites sont adjacentes et convergent donc
vers la méme limite £. Ici €, = v,, — uy, = % Donc u,, est une valeur approchée par défaut de £ a %

pres. Pour avoir une valeur approchée de ¢ & 1072 pres, il suffit de prendre n = 100.
La convergence de u,, et v, vers £ est donc d’ordre %

5.2 Suites extraites

Définition

Soit u, une suite de nombres réels ou complexes.

Une suite extraite de u, est une suite de la forme wy,,, Uny, .., Up,, ..., 0Ny <ng < ... <
np < ...

est une suite strictement croissante d’entiers naturels.

Les exemples les plus simples de suites extraites sont la suite des termes de rang pair us, et la suite
des termes de rang impair ugp41 (voir exemple 23.5). Un exemple plus exotique est donné par la suite
U, U3, U5, - .., Up, ...des termes correspondant aux indices qui sont des nombres premiers.

Le théoréme de Bolzano-Weierstrass s’énonce ainsi :

Théoreme[Bolzano-Weierstrass]

De toute suite réelle bornée on peut extraire une sous-suite convergente.

Autrement dit, si a < u,, < b pour tout entier n, alors il existe un réel £ et une sous-suite Up,, tels
que

limy, o0 Un, = £ € [a,b].

Démonstration
Voir exercice 23.16.
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6 Exercices

6.1 Les basiques

Exercice 1
Soit u,, définie par son premier terme uy = % et la relation de récurrence uy,11 = \/2uy,.

1. Démontrer par récurrence que u,, est croissante et majorée par 2.
Conclusion ? Calculer lim,—, 4 o0 Up.

2. Représenter graphiquement f (z) = v/2x sur [0, +oc[. Utiliser ce graphique pour vérifier les résul-
tats précédents.

Exercice 2
Soit u, définie par son premier terme uy = 7 et la relation de ré = L1y, +6

n p p 0 = 7 et la relation de récurrence u, 1 = —5uy, .
Démontrer que la suite v, = u,, — 5 est une suite géométrique. En déduire que u,, est convergente et
trouver sa limite.

Exercice 3
On pose

"1 1 1 1
un:]§ﬁ:1+ﬂ+i+m+a et v, = Uy, +

n-n!
Démontrer que u,, et v, sont adjacentes.

Exercice 4
Soit u, définie par ug =1 et upy1 = iu% + 1.

1. Démontrer que u, > 0 pour tout n € N.
Démontrer par récurrence que u, est croissante.
Démontrer par récurrence que u, est majorée par 2. Qu’en conclut-on ?

Calculer limy,_, 4 oo Up.

AN

Que se passe-t-il si la suite u,, vérifie la méme relation de récurrence, mais avec un premier terme
Uug = 37

Exercice 5

Soit u, définie par ug =0 et up1 = —%ufl + 1.
1. Etudier u, sur un graphique. Que remarque-t-on ?
2. Montrer que, pour tout n € N, 0 < u,, < 1.

3. On consideére les suites extraites v, = ug, et wy, = Uapt1.
Démontrer par récurrence que v, est croissante et w,, est décroissante.

En déduire que v, et w, sont convergentes.
4. Montrer que v, et w, ont la méme limite. Que peut-on dire de v, et w, ?

5. En déduire que la suite u, est convergente et calculer sa limite.

Exercice 6
: _ 1 5
Soit up = 5 > p_1 k°.
Démontrer que 0 < u, < % pour tout n € N*,
En déduire que u,, est convergente et trouver sa limite.

Exercice 7
Soitun:%“—i—%ﬁ—i—---—i—% (n>1).

1. Ecrire u,, grace au signe »_.

10
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. Démontrer que u,, est croissante.
. En observant que +k <1 - pour tout k > 0, démontrer que u, < 1 pour tout n > 1. Conclusion ?

. Représenter graphiquement la fonction f(x) = lTr sur [0, 1].

Tt W N

. En remarquant que

1>< 1 +1X 1 e +1X 1
Up = — - X —
L) 1+% n 1+2 n 1+1’

interpréter u,, comme une somme de surfaces de rectangles sur le graphique précédent.

6. Que deviennent ces rectangles lorsque n — +o00 ? En déduire limy, oo Up.

Exercice 8

. 1
Soient Up = Ek 1 W et vy, = up + 32"

Montrer que u,, et v, sont convergentes.

Exercice 9

On pose S, = > 1 (%1
Montrer que les suites extraites u, = Sa,, et v, = So,41 sont adjacentes.
En déduire la convergence de S,.

k

Exercice 10

Cet exercice présente, sous une forme modernisée, un procédé de calcul de /2 figurant sur une tablette
d’argile provenant des fouilles de Babylone.
La suite u,, est définie par ug = 2 et la relation de récurrence

Upt1 = % <U2n + un> = f(un).

1. Calculer uq, us, ug sous forme de fractions.

2. Démontrer par récurrence que u, > 0 pour tout n € N.

©w

Démontrer que, pour tout n > 0, Upp1 — V2 = 211L (un \/5)2 En déduire que, pour tout n € N,
Uy > \/§

Exprimer u,4+1 — u, en fonction de u,. En déduire que la suite u, est décroissante.

Démontrer que la suite u,, est convergente et calculer sa limite.

Pour tout n € N, on pose v, = ul Démontrer que u,, et v, sont adjacentes.
n

NS G

Déduire de ce qui précede un encadrement de /2, permettant d’obtenir une valeur approchée de
V2 avec quatre décimales exactes.
6.2 Les techniques

Exercice 11
Soient u,, et v, définies pour n > 2 par

n—1 1 n o1
Uy = %—lnn et v, = E—lnn
k=1 k=1
1. Montrer la double inégalité (1) : pour tout > 0, 7 <In(1+z) <

2. Montrer que les suites u,, et v, sont adjacentes. Leur limite commune s appelle la constante d’Euler
et se note 7. Comment peut-on calculer une valeur approchée de v & 1072 pres ?

3. Interpréter u, a 'aide d’'une somme de surfaces et de la représentation graphique de y = %

11
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Exercice 12 1

n
kz::1 Vin+ k) (n+k+1)
1. Montrer que u,, est bornée.

Soit la suite u,, =

2. Montrer que u,, est convergente et donner un encadrement de sa limite.

Exercice 13
—u,

e
On définit u,, par vy = 3 et up11 = pour tout n > 1.

Etudier la convergence de cette suite.

Exercice 14
Pour tout entier n > 1, on considére I’équation 2™ +x — 1 =0 (FE,), ou 'inconnue = est recherchée
dans |0, 4+-o0[.

1. Résoudre I’équation (E,) pour n =1et n = 2.

2. Etudier les variations de la fonction  — 2™ 4z — 1 sur [0, +oo[ pour n > 1. En déduire que
léquation (F,) admet une et une seule racine positive qu’on notera x,, et montrer que 0 < x,, < 1
pour tout n > 1.

3. Déterminer ’ensemble de définition D de la fonction

fla) = In(1l—x)

Inx

et prouver que f est strictement croissante sur D.
4. Montrer que f (z,,) = n pour tout n > 1.
5. Prouver que la suite x, est strictement croissante.

6. En déduire la convergence de la suite x, vers un nombre réel L, et préciser la valeur de L.

Exercice 15
Soit u, une suite convergente de nombres réels ou complexes.
Démontrer que sa limite est unique.

6.3 Les exotiques et les olympiques

Exercice 16 [(Bolzano-Weierstrass avec vue sur la mer)]
Soit u,, une suite réelle.

On dit que 'entier n a vue sur la mer si pour tout p > n, u, < uy,.
On note A I'ensemble des entiers qui ont vue sur la mer.

1. Montrer que, si A est infini, il existe une suite extraite de w,, décroissante.
2. Montrer que, si A est fini, il existe une suite extraite de u, croissante.

3. Démontrer le théoréme de Bolzano-Weierstrass.

Exercice 17
Pour toute suite u1,us, ..., u,, ... de nombres réels, on considere la moyenne de ses n premiers termes

_uptu+-c-+ Uy
n — n .

1. On suppose que lim,,_, o u, = 0. Démontrer que lim,,_, v, = 0.

2. En déduire le théoreme de la moyenne de Césaro : si la suite u, converge vers ¢, alors v,, converge
vers /.
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Exercice 18[(Moyenne arithmético-géométrique de Gauss)|]
Soient a et b deux nombres réels avec 0 < a < b.
On définit les suites a,, et b, par ag = a,bg = b, et les relations de récurrence

an + by,
2

nt+1 = Vanbp, bpy1 = pour tout n € N.

1. Démontrer que a, < b, pour tout n € N.

2. Démontrer que les suites a, et b, sont adjacentes. Leur limite commune M (a,b) s’appelle la
moyenne arithmético-géométrique de a et b.

3. Calculer M (1,2) avec 7 décimales exactes.

Fin de chapitre
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